Hodge Theory and Symplectic Boundary Conditions
نویسندگان
چکیده
We study symplectic Laplacians on compact symplectic manifolds with boundary. These Laplacians are associated with symplectic cohomologies of differential forms and can be of fourth-order. We introduce several natural boundary conditions on differential forms and use them to establish Hodge theory by proving various form decomposition and also isomorphisms between the symplectic cohomologies and the spaces of harmonic fields. These novel boundary conditions can be applied in certain cases to study relative symplectic cohomologies and Lefschetz maps between relative de Rham cohomologies. As an application, our results are used to solve boundary value problems of differential forms.
منابع مشابه
Néron Models and Boundary Components for Degenerations of Hodge Structure of Mirror Quintic Type
Introduction Part I: Hodge-theoretic analysis I.A. Notations and general background Review of material from [GGK] I.B. Integral symplectic linear algebra background I.C. Analysis of the LMHS in the three cases Part II. Boundary component structure II.A. Review of material from [KU] II.B. Boundary component structure for degenerations of Hodge structure of mirror quintic type Part III: Geometric...
متن کاملm at h . D G ] 2 4 Ju n 20 04 CANONICAL EQUIVARIANT EXTENSIONS USING CLASSICAL HODGE THEORY
Lin and Sjamaar have used symplectic Hodge theory to obtain canonical equivariant extensions for Hamiltonian actions on closed symplectic manifolds that have the strong Lefschetz property. Here we obtain canonical equivariant extensions much more generally by means of classical Hodge theory.
متن کامل. D G ] 2 4 Ju n 20 04 CANONICAL EQUIVARIANT EXTENSIONS USING CLASSICAL HODGE THEORY
Lin and Sjamaar have used symplectic Hodge theory to obtain canonical equivariant extensions for Hamiltonian actions on closed symplectic manifolds that have the strong Lefschetz property. Here we obtain canonical equivariant extensions much more generally by means of classical Hodge theory.
متن کاملApplying Hodge theory to detect Hamiltonian flows
We prove that when Hodge theory survives on non-compact symplectic manifolds, a compact symplectic Lie group action having fixed points is necessarily Hamiltonian, provided the associated almost complex structure preserves the space of harmonic one-forms. For example, this is the case for complete Kähler manifolds for which the symplectic form has an appropriate decay at infinity. This extends ...
متن کاملBoundary conditions as constraints
A new method to compute the symplectic structure of a quantum field theory with non trivial boundary conditions is proposed. Following the suggestion in [1, 2], we regard that the boundary conditions are second class constraints in the sense of the Dirac’s method. However, we show that this proposal is more useful if we consider an inverse of the Holographic map between a theory defined in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014